
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Strong Password Hash Secure Scheme Using Image Fusion

 1
Ms.Snehal A. Mahajan, 2Ms.Anjali S. Mahajan,

 3Ms.Richa Sharma

1PG Student,CSE Department,
G.H.Raisoni Academy College of Engineering & Technology, Nagpur

2HOD, CSE Department,

Priydarshani Institute of Technology, Nagpur

3Professor, CSE Department,
G.H. Raisoni Academy College of Engineering & Technology, Nagpur

Abstract:
This paper presents a robust and secure

image hash algorithm. The algorithm extracts

robust image features in the Radon transform

domain. A randomization mechanism is

designed to achieve good discrimination and

security. The hash value is dependent on a

secret key. We evaluate the performance of

the proposed algorithm and compare the

results with those of one existing Radon

transform- based algorithm. We show that the

proposed algorithm has good robustness

against content preserving distortion. It with

stands JPEG compression, filtering, noise

addition as well as moderate geometrical

distortions. Additionally, we achieve improved

performance in terms of discrimination,

sensitivity to malicious tampering and

receiver operating characteristics. We also

analyze the security of the proposed algorithm

using differential entropy and

confusion/diffusion capabilities. Simulation

shows that the proposed algorithm well

satisfies these metrics.

Keywords:

Hash Value, Hash Strength, Image Fusion,
Visual Cryptography, Permutation, PSNR,
MSE

1. Introduction:

Password strength is a measure of the
effectiveness of a password in resisting
guessing and brute-force attacks. In its usual
form, it estimates how many trials an attacker
who does not have direct access to the
password would need, on average, to guess it
correctly. The strength of a password is a
function of length, complexity and
unpredictability. Using strong passwords
lowers overall risk of a security breach, but
strong passwords do not replace the need for
other effective security controls. The
effectiveness of a password of a given
strength is strongly determined by the design
and implementation of the authentication
system software, particularly how frequently
password guesses can be tested by an attacker
and how securely information on user
passwords is stored and transmitted. Risks are
also posed by several means of breaching
computer security which are unrelated to
password strength.
A strong password:

• has at least 15 characters;

• has uppercase letters;

• has lowercase letters;

• has numbers;

• Has symbols, such as `! " ? $? % ^ & * () _ -
+ = { [}] : ; @ ' ~# | \ < , > . ? /

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

• Is not like your previous passwords;

• is not your name;

• is not your login;

• is not your friend’s name;

• is not your family member’s name;

• is not a dictionary word;

• is not a common name;

• is not a keyboard pattern, such as qwerty,
asdfghjkl, or 12345678.
1.1 Password Strength:

There are two factors to consider in
determining password strength: the average
number of guesses the attacker must test to
find the correct password and the ease with
which an attacker can check the validity of
each guessed password. The first factor is
determined by how long the password is how
large a set of characters or symbols it is
drawn from and whether the password is
created randomly or by a more predictable
process. Users of password-protected
resources often have control of this factor.
The second factor is determined by how the
password is stored and used. This factor is
determined by the design of the password
system and beyond control of the user. The
rate at which an attacker can submit guessed
passwords to the system is a key factor in
determining system security. Some systems
impose a time-out of several seconds after a
small number (e.g., three) of failed password
entry attempts. In the absence of other
vulnerabilities, such systems can be
effectively secure with relatively simple
passwords. However the system must store
information about the user passwords in some
form and if that information is stolen, say by
breaching system security, the user passwords
can be at risk.
1.2 Password Creation:
Passwords are created either automatically
(using randomizing equipment) or by a
human. While the strength of randomly
chosen passwords against a brute force attack
can be calculated with precision, determining
the strength of human-generated passwords is

challenging and the latter case is more
common. Typically, humans are to choose a
password, sometimes guided by
suggestions or improvements in computing
technology keep increasing the rate at which
guessed passwords can be tested.
1.3 Password Guess Validation:
Systems that use passwords for
authentication must have some way to check
any password entered to gain access. If the
valid passwords are simply stored in a system
file or database, an attacker who gains
sufficient access to the system will obtain all
user passwords, giving the attacker access to
all accounts on the attacked system, and
possibly other systems where users employ
the same or similar passwords. One way
to reduce this risk is to store only a
cryptographic hash of each password instead
of the password itself. Standard
cryptographic hashes, such as the
Secure Hash Algorithm series, are very
hard to reverse, so an attacker who gets hold
of the hash value cannot directly recover the
password. However, knowledge of the hash
value lets the attacker quickly test guesses
offline. Password cracking programs are
widely available that will test large number of
trial passwords against a purloined
cryptographic hash. Crack a 10 letter single-
case password in one day. Note that the work
can be distributed over many computers for an
additional speedup proportional to the number
of available computers with comparable
GPUs. Special key stretching hashes are
available that take a relatively long time to
compute, reducing the rate at which guessing
can take place. Although it is considered best
practice to use key stretching, many common
systems do not. Another situation where quick
guessing is possible is when the password is
used to form a cryptographic key. In such
cases, an attacker can quickly check to see if
a guessed password successfully decodes
encrypted data. For example, one
commercial product claims to test 103,000

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

WPA PSK passwords per second. If a
password system only stores the hash of the
password, an attacker can pre-compute hash
values for common passwords variants and for
all passwords shorter than a certain length,
allowing very rapid recovery of the password
once its hash is obtained. Very long lists of
pre-computed password hashes can be
efficiently stored using rainbow tables. This
method of attack can be foiled by storing a
random value, called a cryptographic salt,
along with the password. The salt is combined
with the password when computing the hash,
so an attacker precomputing a rainbow table
would have to store for each password its
hash with every possible salt value. This
becomes infeasible if the salt has a big
enough range, say a 32-bit number.
Unfortunately, many authentication systems
in common use do not employ salt and
rainbow tables are available on the Internet
for several such systems.
1.4 Problem Definition:
Sequence of characters letters, numbers,
symbols used as a secret key for accessing a
computer system or network. Passwords are
used also for authentication, validation, and
verification in electronic commerce.
2. Literature Survey:
2.1 Human-generated passwords:
People are notoriously remiss at achieving
sufficient entropy to produce satisfactory
passwords. Some stage magicians exploit this
inability for amusement, in a minor way, by
divining supposed random choices (of
numbers, say) made by audience members.
Thus, in one analysis of over 3 million eight-
character passwords, the letter "e" was used
over 1.5 million times, while the letter "f"
was only used 250,000 times. A uniform
distribution would have had each character
being used about 900,000 times. The most
common number used is "1", whereas the
most common letters are a, e, o, and r. Users
rarely makes full use of larger characters sets
in forming passwords. For example, hacking

results obtained from a MySpace phishing
scheme in 2006 revealed 34,000 passwords,
of which only 8.3% used mixed case,
numbers, and symbols. Note that the full
strength associated with using the entire
ASCII character set (numerals, mixed case
letters and special characters) is only achieved
if each character in the password is chosen
randomly from that set. Capitalizing a letter
and adding a couple of numbers and a special
character to a password will not achieve the
same strength. If the numbers and special
character are added in predictable ways, say at
the beginning and end of the password, they
could even lower password strength compared
to an all letter random password of the same
length.
2.2 NIST Special Publication 800-63:
NIST Special Publication 800-63 suggests
the following scheme to roughly estimate the
entropy of human-generated passwords:

• The entropy of the next seven
characters are two bits per character;

• The entropy of the first character is four
bits;

• The ninth through the twentieth character
has 1.5 bits of entropy per character;

• Characters 21 and above have one bit of
entropy per character.

A "bonus" of six bits is added if both upper
case letters and non- alphabetic characters are
used. A "bonus" of six bits is added for
passwords of length 1 through 19 characters
following an extensive dictionary check to
ensure the password is not contained
within a large dictionary. Passwords of 20
characters or more do not receive this bonus
because it is assumed they are pass-phrases
consisting of multiple dictionary words. Using
this scheme, an eight-character human-
selected password without upper case letters
and non-alphabetic characters is estimated to
have 18 bits of entropy. The NIST publication
concedes that at the time of development,
little information was available on the real
world selection of passwords. Later research

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

into human-selected password entropy using
newly available real world data has
demonstrated that the NIST scheme does not
provide a valid metric for entropy estimation
of human-selected passwords.
2.3. Usability and Implementation

Considerations:
Because national keyboard implementations
vary, not all 94 ASCII printable characters
can be used everywhere. This can present a
problem to an international traveler who
wished to log into remote system using a
keyboard on a local computer. See keyboard
layout. Many hand held devices, such as tablet
computers and smart phones, require complex
shift sequences to enter special characters.
Authentication programs vary in which
characters they allow in passwords. Some do
not recognize case differences (e.g., the
upper- case "E" is considered equivalent to
the lower-case "e"), others prohibit some of
the other symbols. In the past few decades,
systems have permitted more characters in
passwords, but limitations still exist. Systems
also vary in the maximum length of
passwords allowed.
2.4 Examples of Weak Passwords:
As with any security measure, passwords
vary in effectiveness (i.e., strength); some are
weaker than others. For example, the
difference in weakness between a dictionary
word and a word with obfuscation (i.e., letters
in the password are substituted by, say,
numbers— a common approach) may cost a
password cracking device a few more
seconds– this adds little strength. The
examples below illustrate various ways weak
passwords might be constructed, all of which
are based on simple patterns which result in
extremely low entropy, allowing them to be
tested automatically at high speeds.
2.5 Guidelines for Strong Passwords:

Guidelines for choosing good passwords are
designed to make passwords less easily
discovered by intelligent guessing. Common
guidelines include:

• A minimum password length of 12 to
14 characters if permitted

• Generating passwords randomly where
feasible

• Avoiding passwords based on
repetition, dictionary words, letter or number
sequences, usernames, relative or pet
names, romantic links (current or past), or
biographical information (e.g., ID numbers,
ancestors' names or dates).

• Including numbers, and symbols in
passwords if allowed by the be changed at
installation time): password, default, admin,
guest, etc. Lists of default passwords are
widely available on the internet

• Dictionary words: chameleon, RedSox,
sandbags, bunnyhop!, IntenseCrabtree, etc.,
including words in non- English dictionaries.

• Words with numbers appended:
password1, deer2000, john1234, etc., can be
easily tested automatically with little lost time.

• Words with simple obfuscation:
p@ssw0rd, l33th4x0r, g0ldf1sh, etc., can be
tested automatically with little additional
effort. For example a domain administrator
password compromised in the DigiNotar
attack was reportedly Pr0d@dm1n.

• Doubled words: crab crab, stop stop,
treetree, passpass, etc.

• Common sequences from a keyboard
row: qwerty, 12345, asdfgh, fred, etc.

• Numeric sequences based on well

known numbers such as 911314159...), or
27182...etc.

• Identifiers: jsmith123, 1/1/1970, 555–
1234, your username, etc.

• Anything personally related to an
individual: license plate number, Social
Security number, current or past telephone
number, student ID, address, birthday, sports
team, relative's or pet's
names/nicknames/birthdays/initials, etc., can
easily be tested automatically after a simple
investigation of person's details. There are
many other ways a password can

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

be weak, corresponding to the strengths of
various attack schemes; the core principle is
that a password should have high entropy
(usually taken to be equivalent to
randomness) and not be readily derivable by
any "clever" pattern, nor should passwords be
mixed with information identifying the user.
On-line services often provide a restore
password function that a hacker can figure out
and by doing so bypass a password.
Choosing hard to guess restore password
questions can further secure the password.
2.6 Password Policy:

A password policy is a guide to choosing
satisfactory passwords. Some are
controversial. They are usually intended to:

• assist users in choosing strong passwords

• ensure the passwords are suited to the target
population recommendations to users with
regard to the handling of their passwords a
requirement to change any password which
has been lost or compromised, and perhaps
that no password be used longer than a limited
time some policies prescribe the pattern of
characters which passwords must contain.

• For example, password expiration is often
covered by password policies. Password
expiration serves two purposes:

• 1) if the time to crack a password is
estimated to be 100 days, password
expiration times fewer than 100 days may
help ensure insufficient time for an attacker.

• 2) if a password has been compromised,
requiring it to be changed regularly should
limit the access time for the attacker Some
argue that password expirations have
become obsolete, since:

• Asking users to change passwords frequently
encourages simple, weak passwords. If one
has a truly strong password, there is little
point in changing it. Changing passwords
which are already strong introduces risk that
the new password may be less strong. A
compromised password is likely to be used
immediately by an attacker to install a
backdoor, often via privilege escalation. Once

this is accomplished, password changes won't
prevent future attacker access. Mathematically
it doesn't gain much security at all. moving
from never changing one's password to
changing the password on every authenticate
attempt (pass or fail attempts) only doubles
the number of attempts the attacker must
make on average before guessing the
password in a brute force attack - one
gains much more security just increasing the
password length by one character than
changing the password on every use.
2.7 Creating and Handling Passwords:

The hardest passwords to crack, for a given
length and character set, are random character
strings; if long enough they resist brute force
attacks (because there are many characters)
and guessing attacks (due to high entropy).
However, such passwords are typically the
hardest to remember. The imposition of a
requirement for such passwords in a password
policy may encourage users to write them
down, store them in PDAs or cellphones, or
share them with others as a safeguard against
memory failure. Some people consider each
of these user resorts to increase security risks.
Others suggest the absurdity of expecting
users to remember distinct complex
passwords for each of the dozens of accounts
they access.

• A training program. Also, updated
training for those who fail to follow the
password policy (lost passwords,
inadequate passwords, etc.).

• Rewarding strong password users by
reducing the rate, or eliminating altogether,
the need for password changes (password
expiration). The strength of user-chosen
passwords can be estimated by automatic
programs which inspect and evaluate
proposed passwords, when setting or changing
a password.

• Displaying to each user the last login
date and time in the hope that the user may
notice unauthorized access, suggesting a
compromised password.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

• Allowing users to reset their
passwords via an automatic system, which
reduces help desk call volume. However,
some systems are themselves insecure; for
instance, easily guessed or researched answers
to password reset questions bypass the
advantages of a strong password system.

• Using randomly generated passwords
that do not allow users to choose their own
passwords, or at least offering randomly
generated passwords as an option.
2.8 Memory Techniques:
Password policies sometimes suggest memory
techniques to assist remembering passwords:
2.8.1 mnemonic passwords: Some users
develop mnemonic phrases and use them to
generate high-entropy (more or less random)
passwords which are nevertheless relatively
easy for the user to remember. For instance,
the first letter of each word in a memorable
phrase. Silly ones are possibly more
memorable. Another way to make random-
appearing passwords more memorable is
to use random words or syllables instead of
randomly chosen letters.

• 2.8.2 after-the-fact mnemonics: After
the password has been established, invent
a mnemonic that fits. It does not have to be
reasonable or sensible, only memorable. This
allows passwords to be random.

• 2.8.3 password patterns: Any pattern in a
password makes guessing (automated or not)
easier and reduces an attacker's work factor.
For example, passwords of the following
case-insensitive form: consonant, vowel,
consonant, consonant, vowel, consonant,
number, number (for example pinray45) are
called Environ passwords The pattern of
alternating vowel and consonant characters
was intended to make passwords more likely
to be pronounceable and thus more
memorable.
2.9 Password Strength Advisers:

Several web sites and some standalone
programs meant to be run without a network
connection on a local machine, offer

automated tests of password strength
adequacy. They are problematic. Any
network based checking necessarily involves
submitting one's password to a purpose
declared system somewhere. Doing so eases
an attacker's problem very considerably; the
relevant network traffic is identifiable as
passwords saving much sifting effort,
authentication of network connection
problems permit authentication problems
(e.g., site spoofing) which are lessened for
equivalent programs running on local
computers.
3.Algorithm:
1. Select Images from directory.
2. Fused an Image.
3. Select Key file
4. Segment key file into multiple segments.
5. Select Segments randomly or manually to
create key file
6. Select Pixels of Fused Image as per
Combined Segmented Image.
7. Convert Pixels value to Decimal Values.
8. Convert decimal Values to ASCII character
Values.
9. Remove redundancy.
10. Check Password Strength
11. If Password (Hash) is strong, then go to
step 12 else go to step
12. Create Backup.
13. Stop
3.1 Proposed Strong Password Generator

Scheme Will Works as Follows:
1. Select input Images which may be of any
type like RGB, Gray and Binary etc.
2.We perform Image fusion algorithm that
combines all selected images into a single
Image. Significance of image fusion algorithm
is only to avoid the dependency of
generated password on single image. Image
fusion modifies input image pixels & at the
result end, we find two images are mixed up.
Let us consider the following example of two
image fusion (RGB Format)

3. Once the image are fused, we will apply
two shares Visual Cryptography that Encrypt

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 1, Feb-Mar, 2014
ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

the image & converts it into unreadable
format, result of visual cryptography becomes
as follow:
4.The Cryptographic image is unreadable in
format that’s why an intruder will find
difficulty in reading Plain image for
password decryption. Cryptographic image
contain a decimal pixel value either 0 or 255.
5. Crypto image is a input to our Proposed
Password Generator Algorithm we choose the
pixels from Crypto image based on the values
of Keys, we suggest the multiple key
selection to create more patterns of selection.
Finally we assemble all these selected pixels
into a single dimensional array which we will
divide into 04 sections that is Digits,
Characters, Special Symbols, & Special
Character.
6. Strong password definition says that,
Password should contain Digits, Characters,
Special Symbols, & Special Characters and it
should not be breakable by Non of the
Brilliant Intruder easily, in proposed work; we
will try to Mix up all the generated sections
with permutations so that every time & in
every round an Unique Password will
generate.
4. Conclusion:
In this work, we propose a robust and secure
image hash algorithm. The algorithm extracts
image features in the Radon transform
domain. A randomization mechanism is
incorporated to make the hash output
dependent on a secret key. It is resilient to
filtering, JPEG compression, and noise
addition. It is also robust to moderate
geometrical distortions including rotation
and cropping. The proposed algorithm
achieves significant improvement to the well-
known RASH algorithm.It has better
discrimination and higher sensitivity to
malicious tampering than RASH, which
leads to a better operating characteristic. The
key-dependent feature also makes it suitable
for a wider range of applications. The
security of the algorithm is evaluated in

terms of differential entropy and
confusion/diffusion capabilities. Good
security is confirmed by both metrics.In the
future, we plan to improve the proposed
algorithm by detecting several geometric
distortions (e.g. scaling and cropping) before
computing the hash distance.This will further
enhance robustness. More security metrics
will be taken into account.
5.Reference:

[1] Venkatesan, R., Koon, S., Jakubowski,
M., Moulin, P.: Robust image hashing.
In:Proceedings of IEEE International
Conference on Image Processing
Vol.3, pp. 664666.(2000)

[2] Swaminathan, A., Mao,Y.,Wu,M.:
Robust and secure image hashing. In:
IEEE Transactions on Information
Forensics and Security, Vol.1, No. 2.
(June 2006)

[3] Mihcak, K., Venkatesan, R.: New
iterative geometric methods for robust
perceptual image hashing. In: In
Proceedings of the Workshop on
Security and Privacy in Digital Rights
Management. (2001)

[4] Lefebvre, F., Macq, B., Legat, J.:
Rash: Radon soft hash algorithm. In:
Proceedings of the European Signal
Processing Conference, Toulouse,
France. (Sep. 2002)

[5] Fridrich, J., Goljan, M.: Robust hash
functions for digital watermarking. In:
Proceedings of the The International
Conference on IT: Coding and
Computing. (2000)

[6] Mao, Y., Wu, M.: Unicity distance of
robust image hashing. In: IEEE
Transactions on Information
Forensics and Security, Vol. 2, No. 3.
(Sep. 2007)

